Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation

نویسندگان

  • T. P. I. Ahamed
  • Vivek S. Borkar
  • S. Juneja
چکیده

For a discrete-time finite-state Markov chain, we develop an adaptive importance sampling scheme to estimate the expected total cost before hitting a set of terminal states. This scheme updates the change of measure at every transition using constant or decreasing step-size stochastic approximation. The updates are shown to concentrate asymptotically in a neighborhood of the desired zero variance estimator. Through simulation experiments on simple Markovian queues, we observe that the proposed technique performs very well in estimating performance measures related to rare events associated with queue lengths exceeding prescribed thresholds. We include performance comparisons of the proposed algorithm with existing adaptive importance sampling algorithms on a small example. We also discuss the extension of the technique to estimate the infinite horizon expected discounted cost and the expected average cost. ∗Work supported in part by grant III.5(157)/99-ET from Dept. of Science and Technology, Government of India

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry

We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...

متن کامل

Adaptive Importance Sampling for Uniformly Recurrent Markov Chains

Importance sampling is a variance reduction technique for efficient estimation of rare-event probabilities by Monte Carlo. In standard importance sampling schemes, the system is simulated using an a priori fixed change of measure suggested by a large deviation lower bound analysis. Recent work, however, has suggested that such schemes do not work well in many situations. In this paper, we consi...

متن کامل

Stochastic Approximation in Monte Carlo Computation

The Wang–Landau (WL) algorithm is an adaptive Markov chain Monte Carlo algorithm used to calculate the spectral density for a physical system. A remarkable feature of the WL algorithm is that it is not trapped by local energy minima, which is very important for systems with rugged energy landscapes. This feature has led to many successful applications of the algorithm in statistical physics and...

متن کامل

Adaptive Importance Sampling on Discrete Markov Chains

In modeling particle transport through a medium, the path of a particle behaves as a transient Markov Chain. We are interested in characteristics of the particle's movement conditional on its starting state which take the form of a \score" accumulated with each transition. Importance sampling is an essential variance reduction technique in this setting, and we provide an adaptive (iteratively u...

متن کامل

Lower Bounds on the Convergence Rates of Adaptive Mcmc Methods

We consider the convergence properties of recently proposed adaptive Markov chain Monte Carlo (MCMC) algorithms for approximation of high-dimensional integrals arising in Bayesian analysis and statistical mechanics. Despite their name, in the general case these algorithms produce non-Markovian, time-inhomogeneous, irreversible stochastic processes. Nevertheless, we show that lower bounds on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2006